

Fusion products measurements of the D+D reactions at very low energies

Dr Rakesh Dubey, University of Szczecin, Poland CleanHME Consortium www.cleanhme.eu https://twitter.com/cleanhme

Outline

- D-D reactions at very low energies
- Fusion products measurements
- Experimental set up
- Results

Pic courtesy: www.oilprice. com

D-D fusion in metallic or gaseous environment

D-D reactions at very low energies

D-D Fusion Products;

Charge particles: Helium-3(³He), Helium-4 (⁴He),

Tritons (³H), Protons (P);

Neutral particles : Neutrons (n), Gammas

How we can measure these particles and Gammas !!

"Nuclear measurements techniques"

WHAT POWERS THE SUN?

Inside stars like the sun, the extreme temperature rips atoms into their components: protons, neutrons and electrons. Under normal conditions, the mutual repulsion of individual protons ought to force them apart. Quantum-tunneling effects in the sun allow hot, high-speed protons to fuse into helium nuclei. This fusion reaction drives the sun's radiance.

Nuclear measurements technique for D-D fusion products at very low energies

Charge particles Detections

Plasma/Electrolysis/Diffusion¹

Detectors: CR39 etc

Reference: 1) Nature 570, 45-51 (2019)...

Low energy Accelerator Facility

Pics courtesy: ORTEC, MIRION tech.

Detectors: PIPS, SiLi, SiGe etc.

Nuclear measurements technique for D-D fusion products at very low energies

Neutral particles and Gammas Detections

Neutrons

Gammas and X rays

Scintillators Detectors and Neutron Counters

Detectors: Nal, HPGe etc.

Pics courtesy: ORTEC, MIRION, KROMEK

Experimental Accelerator facility for Low energy nuclear reactions

- a) Accelerator with Ultra High Vacuum, b) Target Chamber c) Detector holder with Al foils
- d) Electronics set up
 - a)Prototype ECR ion source, low emittance ,high current, light ions a few mA

^{a,b}Ref: M. Kaczmarski, et al., Acta Phys. Pol. B 45, 509 (2014).

Experimental set up for fusion products measurements from D-D reactions at very low energies

D2-beam Energy: 6-16 keV

EG ORTEC Silicon detector : $1000 \, \mu m$ thickness and

Surface area 100 mm ²,

Thick ZrD 2 target that was tilted at 45° to the beam, resulting in the beam spot size of 7x12 mm.

Results: Charge Particles Spectra

Si Detector Calibration set up with radioactive sources

Geant 4 simulations

Thank you! Any questions?

